41. Dehydration of Alkanones by Bare FeO⁺ Involves the $\omega/(\omega - 1)$ Positions: Exclusion of Iron Carbenes as Intermediates

Preliminary Communication

by Detlef Schröder, Karsten Eller, and Helmut Schwarz*

Institut für Organische Chemie der Technischen Universität Berlin, Strasse des 17. Juni 135, D-1000 Berlin 12

(24.1.90)

Fourier-transform ion-cyclotron-resonance (FTICR) mass spectrometry has been used to uncover the mechanisms by which FeO⁺ dehydrates heptan-4-one (**5a**) and nonan-5-one (**6a**) in the gas phase. The study of isotopomeric ketones provides evidence that H₂O loss is not due to a 1,1-elimination, thus ruling out the intermediacy of high-valent iron-carbene species. Rather, H₂O is generated in a formal 1,2-elimination involving the $\omega/\omega - 1$ positions of the alkyl chain ('remote C–H bond activation'). In the consecutive alkene/H₂O elimination, the olefins (ethylene from **5a** and propene from **6a**) originate from the terminal part of one alkyl chain, and the H-atom is transferred to the FeO⁺ moiety in the course of this process, builds up together with an H-atom from the $\omega/\omega - 1$ position of the other alkyl chain the H₂O molecule. In either case, the O-atom of H₂O is provided by the FeO⁺ species.

Iron-catalyzed hydrocarbon oxidation is a field of great scope and economic volume [1]. However, the understanding of the mechanisms by which C–H bonds of alkanes are functionalized is – in spite of the progress over the last three decades – far from being complete [1b]. The current understanding is quite advanced in the case where the catalyst is an iron-porphyrin, and there exists good evidence that such reactions occur *via* high-valent iron-oxo intermediates (Fe(V)O)⁺ [2]¹). One of the most intriguing *non-enzymatic* oxygenation systems was discovered by *Barton* and coworkers and has been referred to by them as the 'Gif IV' system [2h] [3]. Detailed examination led them to propose that iron carbenes 3, formed by oxidative addition of a C–H bond to a high-valent ionic 'Fe=O^{+'} species, are the central intermediates in the course of ketone formation from alkanes (*Scheme 1*).

 $H \qquad H \qquad OH$ $C - H \xrightarrow{"FeO^{+}"} C - Fe^{+} \xrightarrow{-H_2O} C = Fe^{+} \xrightarrow{O_2} C = O + "FeO^{+}"$ $1 \qquad 2 \qquad 3 \qquad 4$

Scheme 1

It should, however, be noted that the groups of *Geletii* and *Shilov* [4] proposed a different explanation. According to these authors, the real oxidant is an *iron-free* pyridine-oxide radical cation, which inserts an O-atom in a CH_2 group to generate

For an excellent collection of papers on this and related topics, see the special (October-November) issue of New J. Chem. 1989, 13. Of particular importance in this context are the following contributions: [1b] [2d-j].

C-centred radicals which further evolve into the major oxidized products, *i.e.* ketones (Scheme 2).

Although it is difficult to reconcile the *Geletii-Shilov* mechanism with *all* experimental findings, it should also be recalled that there exists no firm experimental evidence for any of the intermediates described in *Scheme 1*. In fact, the exact nature of the metal-ion containing intermediates that are suggested to be involved in the oxidation of alkanes is by and large unknown [2g].

Previous studies (for reviews, see [5]) have already demonstrated that more detailed mechanistic information on reactions of ionic transition-metal oxides MO^+ (M = Fe, V, Cr, Os) [6] with simple hydrocarbons can be obtained free from any interference due to aggregation, solvent and counter-ion effects, if the processes are conducted in the dilute gas phase.

Here, we present an account of the reactions of *bare* FeO⁺ with acyclic ketones²) using the technique of *Fourier*-transform ion-cyclotron-resonance mass spectrometry (FTICR). The apparatus (a Spectrospin-CMS-47X equipped with an external ion source) and its operation have been described in detail in [8]. Briefly, Fe^+ is formed via laser desorption/ionization [9] in the external ion source [10] by focussing the beam of a Nd: YAG laser (Spectron Systems, fundamental frequency 1064 nm) onto a stainless steel rod. The ions are extracted from the source and transferred into the analyzer cell by a system of electric potentials and lenses. After deceleration, the ions are trapped in the field of the superconducting magnet (Oxford Instruments), which has a maximum field strength of 7.05 Tesla. The 56 Fe⁺ isotope is isolated via swept double-resonance ejection pulses and allowed to react for 2 s with pulsed-in N₂O to generate FeO⁺ [6a, b]. As this reaction is exothermic by ca. 1.8 eV [11], the products are formed with some excess energy which is carried away by collisionally cooling the system using Ar at a constant background pressure of ca. 10^{-7} mbar. The FeO⁺ species was again 'isolated' and then reacted with the ketones of interest. The latter were present at a pressure of $1-5 \times 10^{-8}$ mbar. Typical reaction time was 1-5 s. All functions of the instrument were controlled by a Bruker-Aspect-3000 mini-computer.

The labeled compounds were synthesized according to standard procedures, purified by preparative GC, and characterized by spectroscopic methods.

For the reactions of FeO⁺ with heptan-4-one (**5a**) and nonan-5-one (**6a**), we observed, as primary products, the species given in *Scheme 3*. Insight into the mechanisms of their formation is provided by the study of the isotopomers **5b–f** and **6b–e** (*Table*). Here, we shall restrict the discussion to the losses of H₂O and alkene/H₂O. The remaining reactions will be reported in a full paper.

With regard to H_2O loss, the labelling data provide an unequivocal answer concerning the positions from which the neutral molecule originates. From the study of the ¹⁸O-

²) The reactions of Fe⁺ with acyclic ketones, including *inter alia* the successive C-H/C-C bond activation of *different* segments of the two alkyl chains, were recently investigated [7].

0

5d

0 1

ን የ ያ

5e

Scheme 3

	∆m												
	'H ₂ O' ^b)			`C ₂ H ₄ /H ₂ O'					'C ₃ H ₆ /H ₂ O'				
	18	19	20	46	47	48	49	50	60	61	62	63	65
5a	100			100									
5b	100			100									
5c	85	15		40	25		35						
5d	83	17		21	26	53							
5e	100			100									
5f		100					86	14					
6a	100								100				
6b	75	25							30	30		40	
6c	76	24								82	18		
6d	68	18	14						23	39			38
6e	100								100				

Table. Losses of H_2O , C_2H_4/H_2O , and C_3H_6/H_2O from the FeO⁺ Complexes of Heptan-4-one (**5a**) and Nonan-5-one (**6a**) and Their Isotopomers^a)

^a) Intensities are expressed in %- Σ fragments = 100%, for each class of neutrals separately.

^b) In the spectra of 5-FeO⁺, contributions for combined losses of H_2O/H_2 and their isotopomers are omitted for the sake of clarity.

labeled substrate **5b**, we note that the C=O O-atom is not incorporated into the neutral molecule. We further note that for the heptan-4-one system **5**-FeO⁺, the H-atoms orginate from the $\omega/\omega - 1$ positions of the alkyl chain. Thus, remote functionalization is operative (for reviews, see [12]). Interestingly, we do not observe products due to 1,1-elimination of H₂O; rather the H₂O molecule is generated in a formal 1,2-elimination reaction. *This finding rules out the intermediacy of an iron-carbene species* **9** (*cf. Scheme 4*); instead, the labelling results are consistent with the formation of a bidentate complex **10**. Incidentally, the latter is also formed with high selectivity in the dehydrogenation of ketones by Fe⁺ [7]. The behavior of the nonan-5-one/FeO⁺ complexes **6**-FeO⁺ is by and large analogous to that of its lower homologue **5**-FeO⁺. Common to both systems are also the quite large kinetic isotope effects associated with the generation of H₂O. This was also observed in many oxidations of alkanes catalyzed by high-valent iron-oxo species [2e]. A mechanism, which is in line with the experimental findings, is suggested in *Scheme* **4**.

We also note the close analogy of this dehydration to the *dehydrosulfurization* observed in the butane-isothiocyanate/Fe⁺ system [13]. Loss of H₂S commences with sulfur abstraction and affords a butane-isocyanide/FeS⁺ intermediate which also abstracts H from the $\omega/\omega - 1$ positions of the alkyl chain. In this as well as in the present system, reaction intermediates are generated in which a FeX⁺ moiety (X = O, S) is 'anchored' to a substrate and specifically activates the remote $\omega/\omega - 1$ positions to eventually yield H₂X.

The consecutive losses of alkene/H₂O from 5 and 6 cannot be accounted for in terms of *Scheme 4*, as far as H₂O elimination is concerned. Instead, another variant is operative. The labeling data reveal that the alkenes (C₂H₄ and C₃H₆, respectively) are formed, with large specifity, from the terminal part of one alkyl chain ('remote functionalization'). Most interestingly, the H-atom transferred to the FeO⁺ moiety of the complex in the course of this reaction (*Scheme 5*; **5a**-FeO⁺ \rightarrow **11**) is eventually incorporated in the H₂O molecule. The second H-atom is provided by the *other* alkyl chain; for the heptan-4-one system the ω and $\omega - 1$ position serves as an H source; for the nonan-5-one complexes, in

H₂O

14

Fe

addition, the $(\omega - 2)$ position contributes to some extent. Unknown kinetic isotope effects prevent a quantitative assignment of the site specificity. In *Scheme 5*, a possible reaction sequence is depicted for the heptan-4-one-FeO⁺ system. We should like to point out that the consecutive alkene/H₂O losses constitute a further example for the activation of different sites of flexible molecules by ionic transition-metal systems [7] [14].

The financial support for our work by the following institutions is gratefully appreciated: Deutsche Forschungsgemeinschaft, Volkswagen-Stiftung, Fonds der Chemischen Industrie, Gesellschaft von Freunden der Technischen Universität Berlin, and Graduiertenkolleg Chemie zu Berlin.

REFERENCES

- a) R.A. Sheldon, J.K. Kochi, 'Metal-Catalysed Oxidations of Organic Compounds', Academic Press, New York, 1981; b) C.L. Hill, Ed., 'Activation and Functionalization of Alkanes', Wiley, New York, 1989.
- [2] a) V. Ullrich, Topics Curr. Chem. 1979, 83, 67; b) P.R. Ortiz de Montellano, Ed., 'Cytochrome P-450: Structure, Mechanism and Biochemistry', Plenum, New York, 1986; c) B. Meunier, Bull. Soc. Chim. Fr. 1986, 578; d) A. M. Khenkin, A. E. Shilov, New. J. Chem. 1989, 13, 659; e) P. Inchley, J. R. L. Smith, R. J. Lower, *ibid.* 1989, 13, 669; f) W. Nam, J. S. Valentine, *ibid.* 1989, 13, 667; g) G. Balavoin, D. H. R. Barton, J. Boivin, P. Lecoupanec, P. Lelandais, *ibid.* 1989, 13, 691; h) A. Sen, E. Gretz, T. F. Oliver, Z. Jiang, *ibid.* 1989, 13, 755; i) J. T. Groves, P. Viski, J. Am. Chem. Soc. 1989, 111, 8537; j) F. P. Guengerich, T. L. Macdonald, Acc. Chem. Res. 1984, 17, 9; k) G. M. Whitesides, C.-H. Wong, Angew. Chem. Int. Ed. 1985, 24, 617; l) T. Tanahashi, M. H. Zenk, Tetrahedron Lett. 1988, 5625; m) W. Bauer, M. H. Zenk, *ibid.* 1989, 5257; n) H. Fretz, W.-D. Woggon, R. Voges, Helv. Chim. Acta 1989, 72, 391.
- [3] a) D.H.R. Barton, J. B. Boivin, M. Gastiger, J. Morzycki, R.S. Hay-Motherwell, W.B. Motherwell, N. Ozbalik, K. M. Schwartzentruber, J. Chem. Soc., Perkin Trans. 1 1986, 947; b) D.H.R. Barton, J. Boivin, W.B. Motherwell, N. Ozbalik, K.M. Schwartzentruber, K. Jankowski, Nouv. J. Chim. 1986, 10, 387; c) D.H.R. Barton, F. Halley, N. Ozbalik, M. Schmitt, E. Young, G. Balavoine, J. Am. Chem. Soc. 1989, 111, 7144; d) D.H.R. Barton, F. Halley, N. Ozbalik, E. Young, G. Balavoine, A. Gref, J. Boivin, New J. Chem. 1989, 13, 177; e) D.H.R. Barton, N. Ozbalik, Chapt. IX of [1b].
- [4] a) Y. V. Geletii, G. V. Lyubimova, A. E. Shilov, *Kinet. Katal.* 1985, 26, 1019; b) Y. V. Geletii, V. V. Lavrushko,
 A. E. Shilov, *Dokl. Acad. Nauk SSSR* 1986, 288, 139; c) A. E. Shilov, G. B. Sul'pin, *Russ. Chem. Rev.* 1987, 56, 442; d) Y. V. Geletii, V. V. Lavrushko, G. V. Lyubimova, *J. Chem. Soc., Chem. Commun.* 1988, 936.
- [5] a) S.W. Buckner, B.S. Freiser, Polyhedron 1988, 7, 1583; b) B.S. Freiser, Chemtracts Anal. Phys. Chem. 1989, 1, 65, and ref. cit. therein.
- [6] a) M. M. Kappes, R. H. Staley, J. Am. Chem. Soc. 1981, 103, 1286; b) M. M. Kappes, R. H. Staley, J. Phys. Chem. 1981, 85, 942; c) T. C. Jackson, D. B. Jacobson, B. S. Freiser, J. Am. Chem. Soc. 1984, 106, 1252; d) T. C. Jackson, T. J. Carlin, B.S. Freiser, *ibid.* 1986, 108, 1120; e) H. Kang, J. L. Beauchamp, *ibid.* 1986, 108, 5663; f) K. K. Irikura, J. L. Beauchamp, *ibid.* 1989, 111, 75; g) H. Kang, J. L. Beauchamp, *ibid.* 1986, 108, 7502.
- [7] D. Schröder, H. Schwarz, J. Am. Chem. Soc., in press.
- [8] a) K. Eller, H. Schwarz, Int. J. Mass Spectrom. Ion Processes 1989, 93, 243; b) K. Eller, W. Zummack, H. Schwarz, J. Am. Chem. Soc. 1990, 112, 621.
- [9] a) B.S. Freiser, Talanta 1985, 32, 697; b) B.S. Freiser, Anal. Chim. Acta 1985, 178, 137.
- [10] P. Kofel, M. Allemann, Hp. Kellerhans, K. P. Wanczek, Int. J. Mass. Spectrom. Ion Processes 1985, 65, 97.
- [11] S.K. Loh, E.R. Fisher, L. Lian, R.H. Schultz, P.B. Armentrout, J. Phys. Chem. 1989, 93, 3159.
- [12] a) H. Schwarz, Acc. Chem. Res. 1989, 22, 282; b) K. Eller, H. Schwarz, Chimia 1989, 43, 371.
- [13] K. Eller, S. Akkök, H. Schwarz, Helv. Chim. Acta 1990, 73, 229.
- [14] a) G. Czekay, K. Eller, D. Schröder, H. Schwarz, Angew. Chem. Int. Ed. 1989, 28, 1277; b) G. Czekay, T. Drewello, K. Eller, W. Zummack, H. Schwarz, Organometallics 1989, 8, 2439.